skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Tianming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MotivationNeural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image data is rotation invariance. Here we consider the application of two schemes for encoding rotation equivariance and invariance in a convolutional neural network, namely, the group-equivariant CNN (G-CNN), and a new architecture with simple, efficient conic convolution, for classifying microscopy images. We additionally integrate the 2D-discrete-Fourier transform (2D-DFT) as an effective means for encoding global rotational invariance. We call our new method the Conic Convolution and DFT Network (CFNet). ResultsWe evaluated the efficacy of CFNet and G-CNN as compared to a standard CNN for several different image classification tasks, including simulated and real microscopy images of subcellular protein localization, and demonstrated improved performance. We believe CFNet has the potential to improve many high-throughput microscopy image analysis applications. Availability and implementationSource code of CFNet is available at: https://github.com/bchidest/CFNet. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less